Ecological Site Applications at Landscape Scales

Jonathan Haufler

EMRI

 Independent, non-profit institute providing largescale conservation planning and implementation assistance to ecosystem management, biodiversity conservation, and landscape assessment initiatives

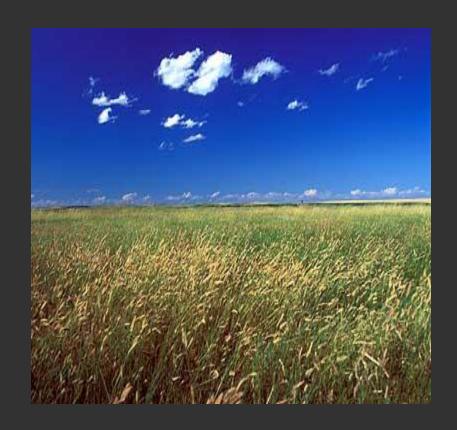
Ecosystem-based Emphasis

- Components:
 - Ecosystem distributions based on physical environment
 - Need for mapping of physical site similarities
 - Ecosystem (plant community) responses to historical disturbance processes
 - Ecosystem responses to anthropogenic influences

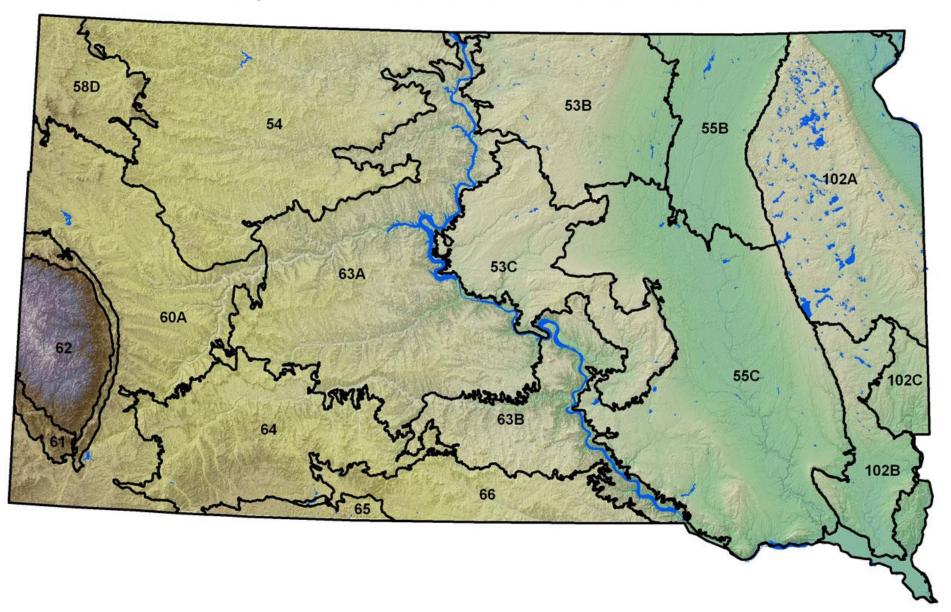
ESD Contributions

- In grass and shrub ecosystems, classification and mapping of ecological sites provides for the understanding of the <u>inherent</u> diversity of landscapes
- MLRA's help bound landscape considerations
- State and transition models allow for effects of historical disturbance processes to be described
- S&T models also allow for anthropogenic changes to be described

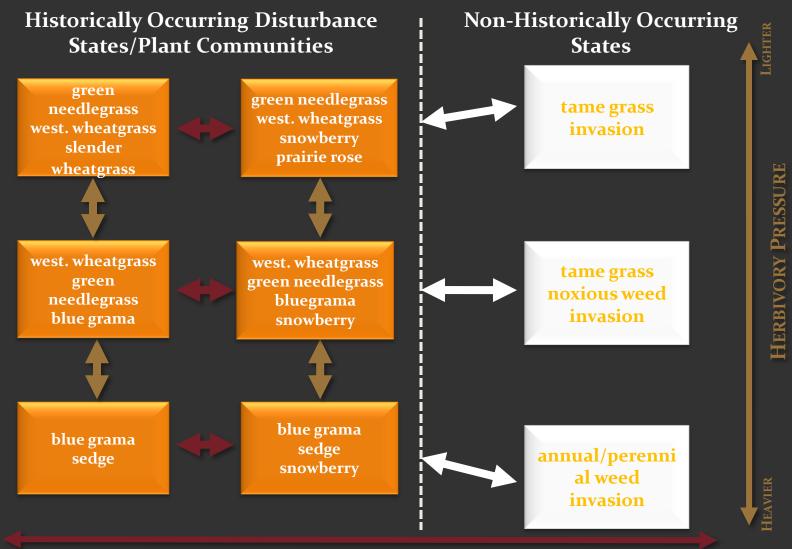
Example application of ESD's


- South Dakota Wildlife Action Plan (WAP)
- Sagebrush Mitigation Metrics
- Sagebrush Restoration Tool
- Lesser Prairie Chicken Management Plan for Oklahoma
- Blackfoot Watershed Montana Terrestrial Ecosystem Assessment

SD WAP


- Addresses conservation planning by focusing on ecosystem diversity
 - Maintain and restore 10% of each ecological site in conditions similar to predominant historical plant community
- Address Species of Greatest Conservation Need in relation ecosystem diversity
 - Link species habitat needs to ecological sites and plant communities

Goal of Approach


 Provide adequate amounts of all SD native ecosystems to provide for the habitat needs for all species

Major Land Resource Areas of South Dakota

Loamy STM

REFERENCE COMMUNITIES Preferred Species Lists

CLAYEY

western wheatgrass
green needlegrass
big bluestem
shortbristle needleandthread

rtbristle needleandthr
blue grama
thickspike wheatgrass
sideoats grama
porcupine grass
slender wheatgrass
needleandthread
prairie dropseed
buffalograss
plains muhly
white sagebrush
plains reedgrass

prairie Junegrass goldenrod

western yarrow prairie sagewort

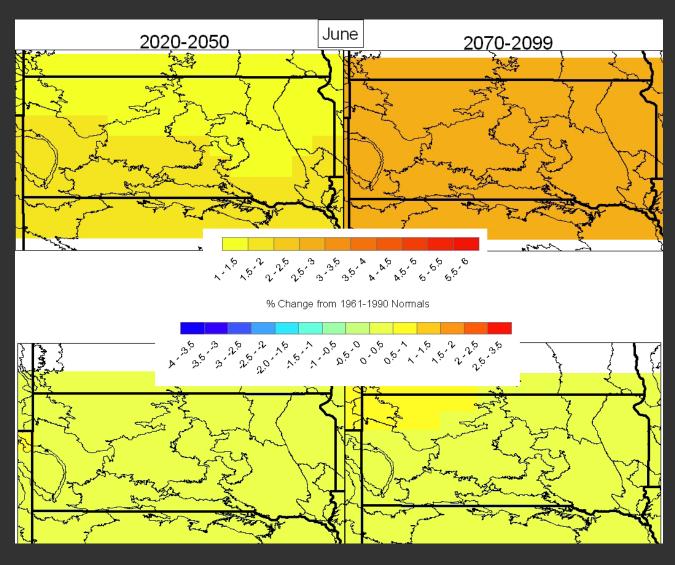
LOAMY

green needlegrass needleandthread western wheatgrass big bluestem slender wheatgrass porcupine grass little bluestem sideoats grama bearded wheatgrass shortbristle needleandthread needleleaf sedge threadleaf sedge plains reedgrass blue grama prairie dropseed prairie Junegrass western snowberry western varrow prairie sagewort

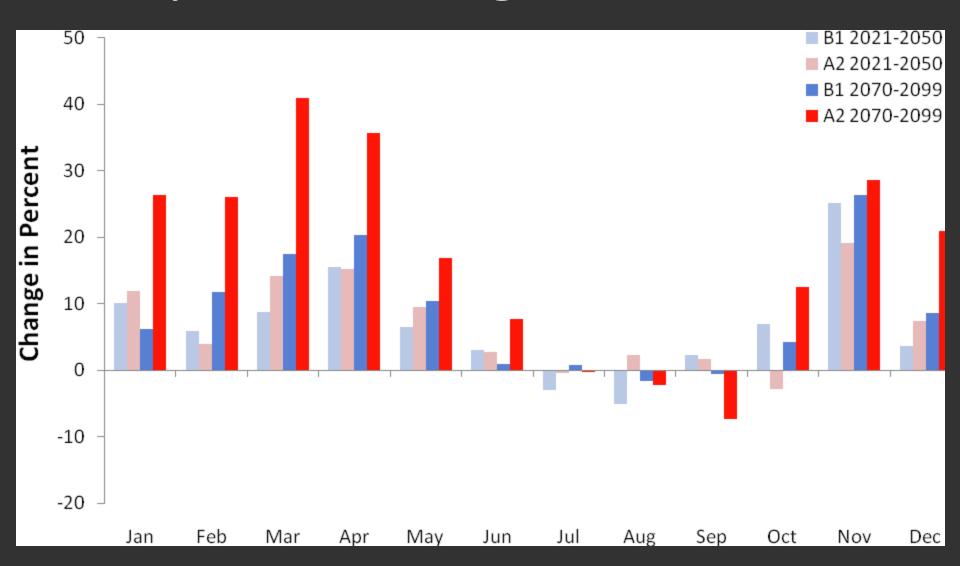
SANDY

prairie sandreed needleandthread sideoats grama big bluestem slender wheatgrass western wheatgrass green needlegrass threadleaf sedge sand bluestem blue grama hairy grama porcupine grass little bluestem leadplant sun sedge Cuman ragweed tarragon prairie sagewort white sagebrush

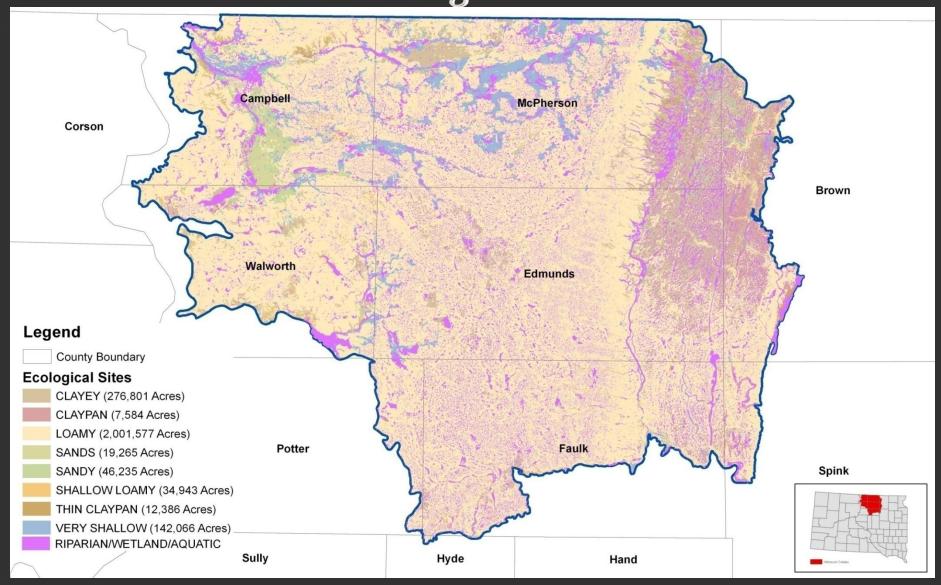
Clayey Ecological Sites, Short Fire Return, Light Grazing, Missouri Coteau

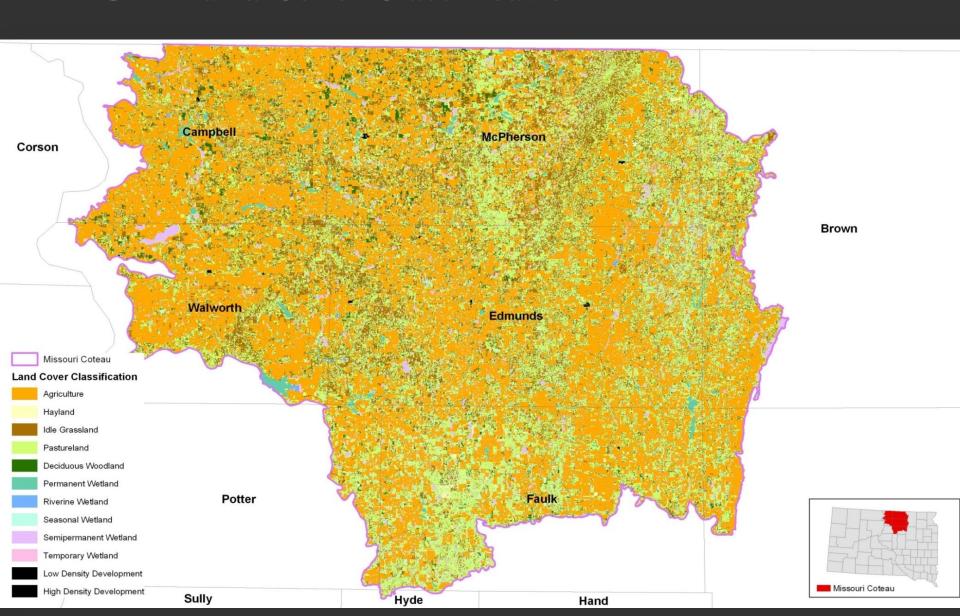

Fire Return Interval: averaging less than 15 years **Grazing:** long-term light grazing (25-35% utilization) **Dominant Species:** grasses - western wheatgrass, green needlegrass, and porcupine grass; forbs – white sagebrush, goldenrod, scurfpea, purple locoweed, scarlet globemallow, and western yarrow.

Other Characteristic Species: shortbristle needle-and-thread, prairie dropseed, sideoats grama, and big bluestem


Productivity Estimate: range = 1,300 to 3100 lbs/acre; representative value = 2,300 lbs/acre

Structure: mixed grasses, 11-20" average vegetation heights


Adjust for climate change


Precipitation change for MLRA 53B

Ecological Sites -Missouri Coteau ecoregion

GAP Land Cover Classification

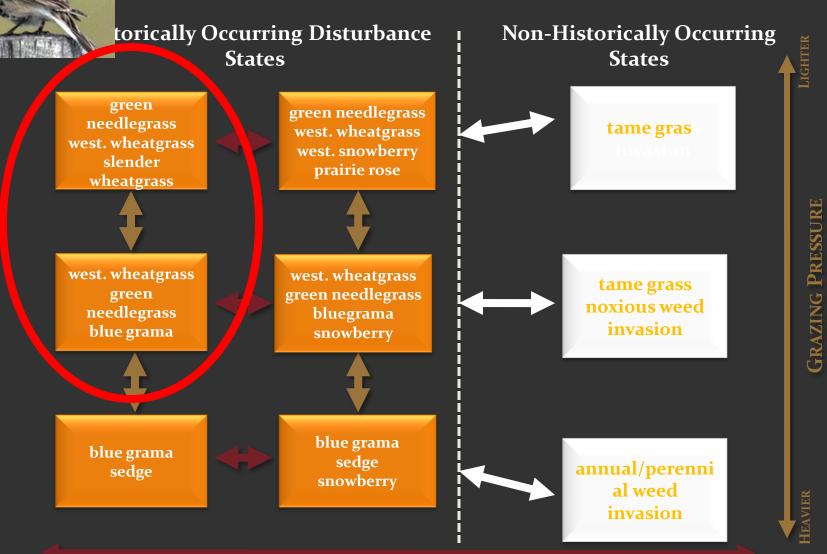
Ecological Sites x Corrected GAP

Ecological Site	Total Acres	Corrected GAP Grasslands Acres
Clayey	271,298	96,342 (-32%)
Claypan	36,360	15,521 (-31%)
Thin Claypan	12,386	5,670 (-24%)
Loamy	2,001,577	225,854 (-68%)
Shallow Loamy	34,943	18,553 (-18%)
Sandy	46,235	16,730 (-37%)
Sands	19,265	4,210 (-56%)
Very Shallow	142,066	56,928 (-28%)

Species of Greatest Conservation Need

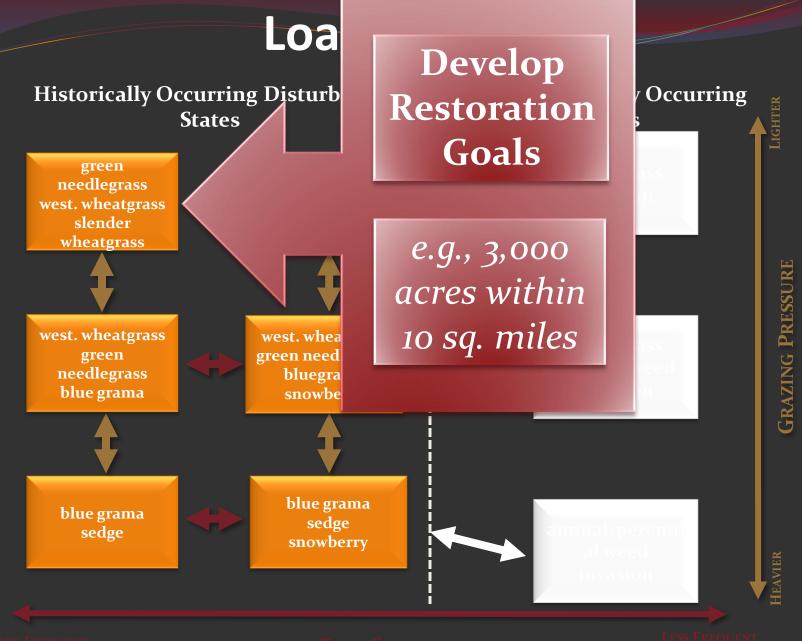
Table 4.1. List of species of greatest conservation need developed for the South Dakota Comprehensive Wildlife Plan.

Scientific Name	Common Name	Selection Code
BIRDS		
Pelecanus erythrorhynchos	American White Pelican	2
Cygnus buccinator	Trumpeter Swan	2
Pandion haliaetus	Ösprey	1
Haliaeetus leucocephalus	Bald Eagle	1
Accipiter gentilis	Northern Goshawk	3
Buteo regalis	Ferruginous Hawk	3
Falco peregrinus	Peregrine Falcon	1
Centrocercus urophasianus	Greater Sage-Grouse	3
Tympanuchus cupido	Greater Prairie-Chicken	2
Grus americana	Whooping Crane	1
Charadrius melodus	Piping Plover	1
Catoptrophorus semipalmatus	Willet	2
Numenius americanus	Long-billed Curlew	2
Limosa fedoa	Marbled Godwit	
Phalaropus tricolor	Wilson's Phalar	61 11 1
Sterna antillarum athalassos	Interior Le	Chestnut-collared
Chlidonias niger	Black	т
Athene cunicularia	Burroying	Longspur
Melanerpes lewis	Lewis's Woodpecker	
Picoides dorsalis	American Thyee-toed Woodpecker	
Picoides arcticus	Black-backed Woodpecker	3
Cinclus mexicanus	A nerican Dipper	1
Anthus spragueii	Sprague's Pipit	2
Calamospiza melanocorys	Lark Bunting 2	
Ammodramus bairdii	Baird's Sparrow 2	
Ammodramus leconteii	Le Conte's Sparrow	3
Junco hyemalis aikeni	White-winged Junco	2
Calcarius ornatus	Chestnut-collared Longspur	2
MAMMALS		
Myotis thysanodes pahasapensis	fringe-tailed myotis	2
Myotis septentrionalis	northern myotis 3	
Corynorhinus townsendii	Townsend's big-eared bat 3	
Spermophilus franklinii	Franklin's ground squirrel	2


Chestnut-collared Longspur

Habitat needs

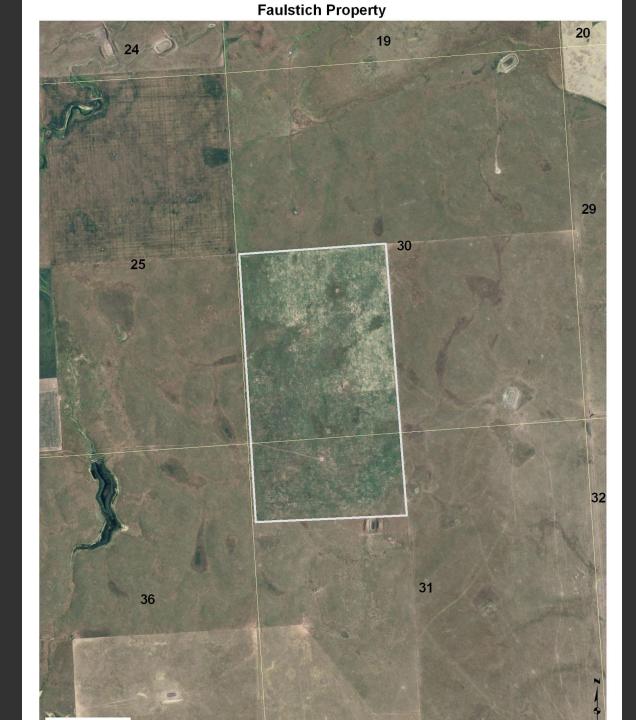
- Native grass ecosystems
- Short and mid-statured grasses, particularly bunchgrasses
- Prefers heterogeneous grazed conditions
- Avoids dense litter accumulation
- Avoids shrubby areas

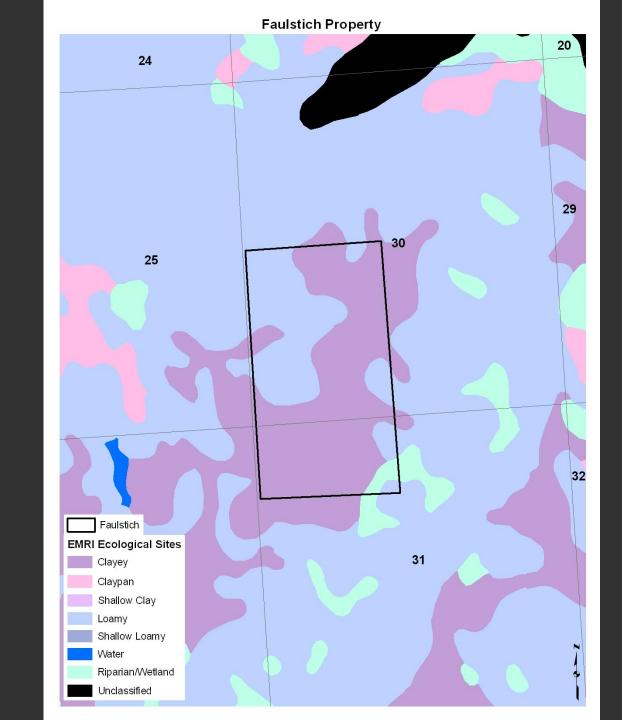

Loamy STM

MORE FREQUENT

TIME SINCE

FIRE




Identify best conservation areas

- Combining factors:
 - Ecological site distributions
 - Past disturbance/ existing conditions
 - Land ownership
 - Projected climate change
 - Other

Web-based Planning Tool

- Identify WAP priorities and their general locations
- Click on any location to see a reference plant community description
- Links back to what species would be helped through site improvements

Clayey Ecological Sites, Short Fire Return, Light Grazing

Fire Return Interval: averaging less than 15 years **Grazing:** long-term light grazing (25-35% utilization) **Dominant Species:** grasses - western wheatgrass, green needlegrass, and porcupine grass; forbs – white sagebrush, goldenrod, scurfpea, purple locoweed, scarlet globemallow, and western yarrow.

Other Characteristic Species: shortbristle needle-and-thread, prairie dropseed, sideoats grama, and big and little bluestem **Productivity Estimate:** range = 1,300 to 3100 lbs/acre; representative value = 2,300 lbs/acre **Structure:** mixed grasses, 11-20" average vegetation heights

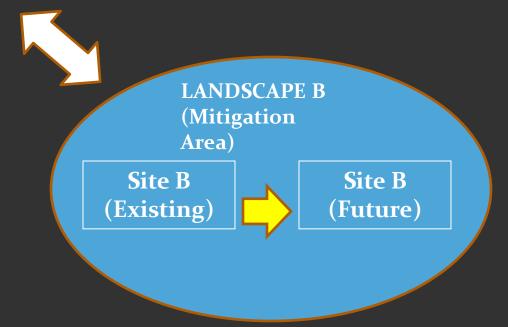
Implementation

- Existing conditions:
 - Kentucky bluegrass and big and little bluestem dominated pasture
- Desired condition:
 - Big and little bluestem, with other native warm and cool season grasses and forbs
- Proposed treatments:
 - Early spring fire and/or herbicide treatment, early season grazing, rest late May- August.

Metrics for Off Site Mitigation Quantification in Sagebrush Ecosystems

NRCS CIG grant with numerous additional funding partners conducted by Haufler and Esgate

Develop and Test Metrics


- Metrics that can consistently quantify impacts and mitigation
 - Commensurate quantification of gains and losses

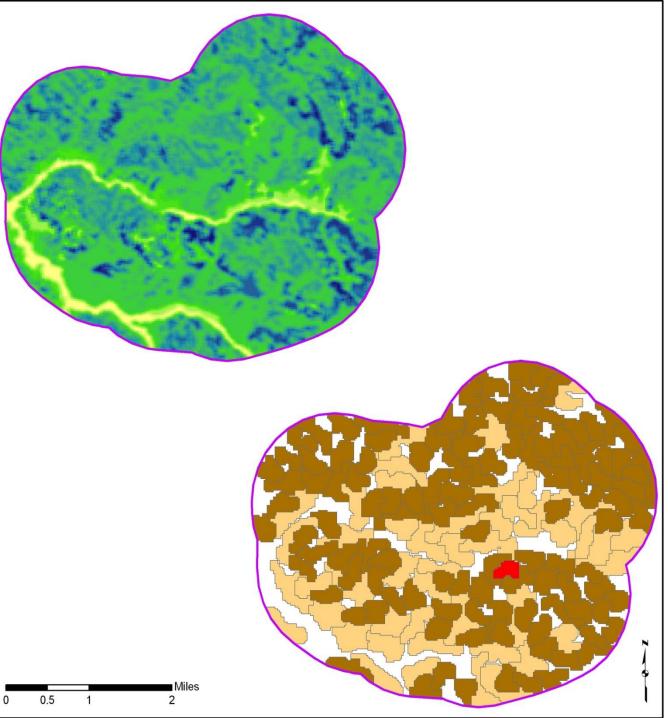
Scales to Measure

- Site level changes
 - Plant communities and site level ecosystem services
- Landscape influences
 - Wildlife responses

Credit Metric System

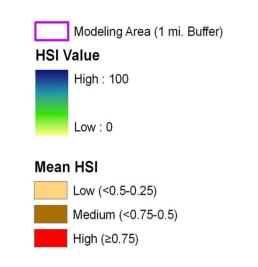
Site Considerations

- Ecological sites
 - Provide for equivalent comparisons
- Existing and future vegetation conditions
 - Compared to reference plant communities from ESD's
- Contributions to habitat of species
 - Evaluated through habitat models



Similarity indices for pre and post mitigation plots

PRE-TREATMENT		POST-TREATMENT		
Loamy 1	Ecological			
Site		Loamy Ecological Site		
<u>Plot</u>	Index	<u>Plot</u>	Index	
1	72.78	1	93.43	
2	46.11	2	81.77	
4	79.54	4	86.57	
5	71.72	5	81.96	
10	85.62	10	96.27	
11	76.17	11	84.03	
12	52.59	12	90.50	
MEAN	69.22	MEAN	87.79	
STD				
ERR	5.46	STD ERR	2.16	

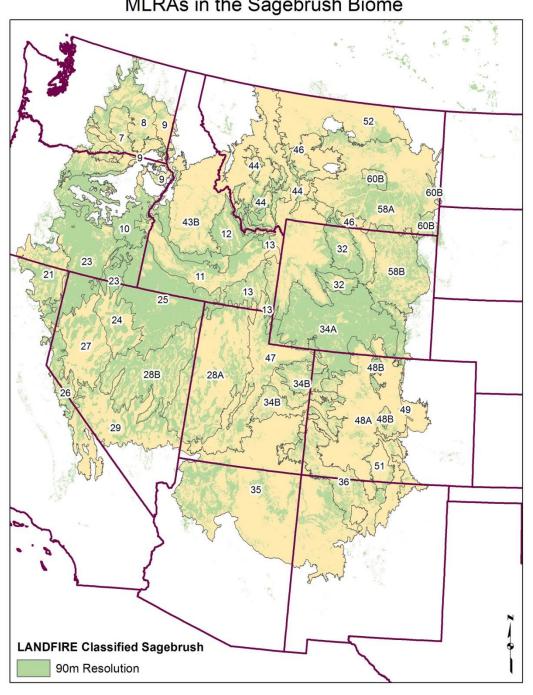

Benefits Produced

- Reduced invasive exotic species from 16.2% relative cover of vegetation to 1.9% relative cover
- Equated to a 10.8% improvement in site quality that produced a net gain of 39 mitigation "units" for 545 acres of loamy site and 83 mitigation "units" for 1157 acres of shallow loamy ecological site
- Can mitigate for impacts to similar sites being developed for energy

Habitat Suitability Index & Home Range Quality

Sage Thrasher

Species	Pre- High*	Pre- Medium	Pre- Low	Post- High	Post- Medium	Post- Low
Pronghorn antelope	O	1	28	О	2	27
Sage thrasher	1	114	47	10	135	49
Sagebrush lizard	O	O	2449	0	О	1983
Sage sparrow	1	37	164	0	34	178
Sagebrush vole	30	3789	958	573	3708	730
Sage grouse- nesting	91	1015	958	79	1106	2384
Sage grouse brood-rearing	151	650	69	103	765	81
Sage grouse- wintering	О	6	106	O	6	109


Sagebrush Planning Tool

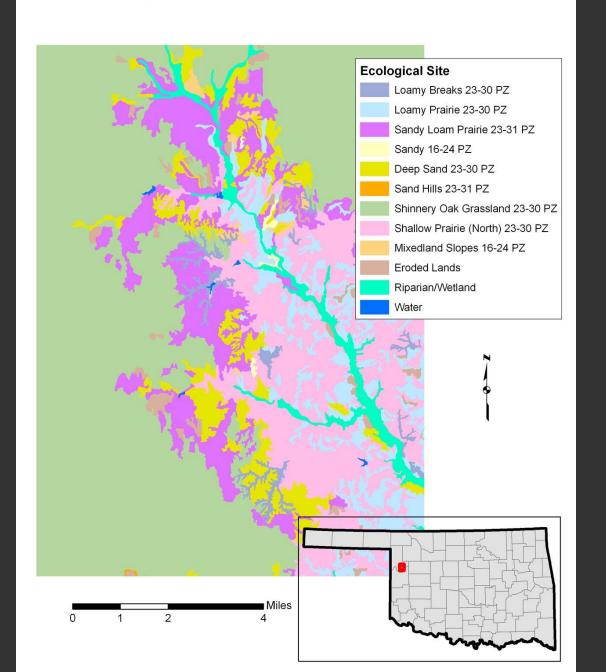
An NRCS CIG project being conducted by EMRI

Objective

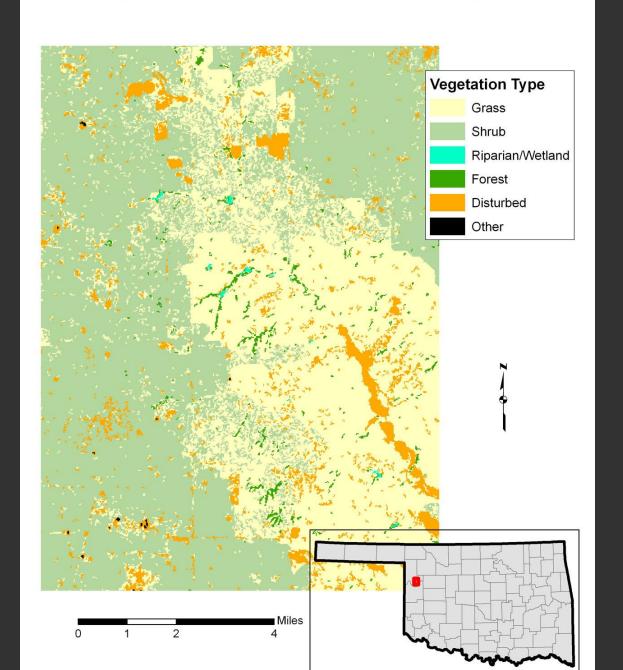
• Develop a web-based planning tool that will identify the desired plant community to restore at any selected site within the sagebrush biome that has been adjusted for predicted effects of climate change and will maximize benefits to sage-grouse and other sagebrush associated species.

MLRAs in the Sagebrush Biome

Soil Data Availability within Sagebrush CIG Boundary Sagebrush CIG Boundary **SSURGO Data Status** No Soils Data Tabular Data Only Spatial and Tabular Data


Ecological Site Contributions

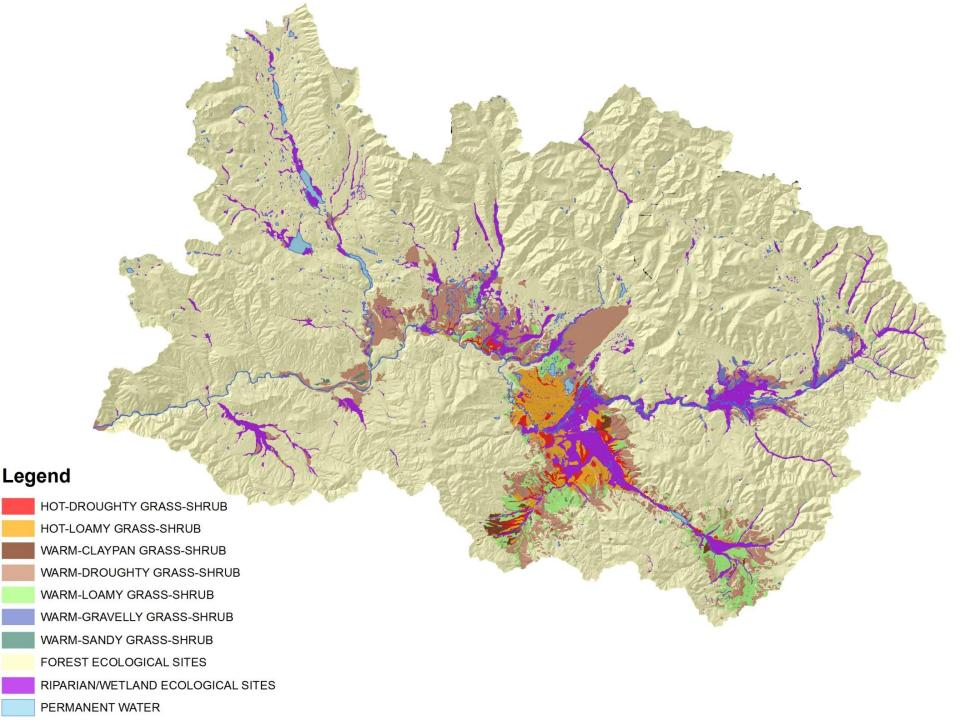
- Locations of inherent conditions for plant communities
- Reference plant community(ies)
- Basis for adjustments for predicted climate change
- Potential of site to contribute to sage-grouse or other species habitat needs
- State and transition models to help guide management/restoration treatments
- Framework for mitigation quantification

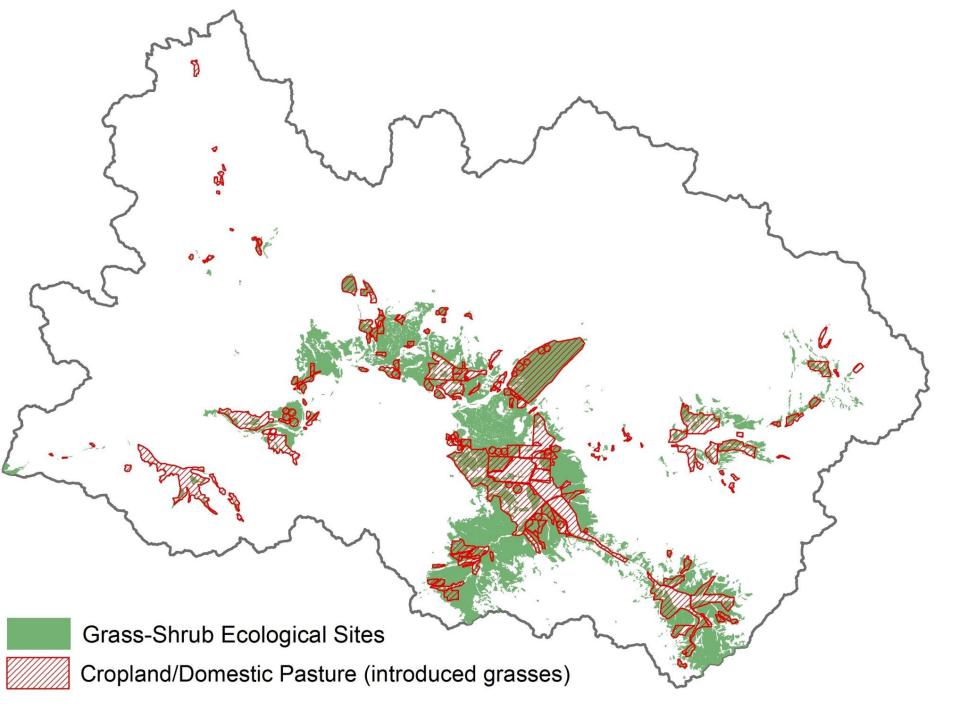

Development of Lesser Prairie Chicken Management Plan for Oklahoma

OK Dept. of Wildlife Conservation

Ecological Sites in a Portion of Ellis County, OK

Vegetation Types in a Portion of Ellis County, OK




 70A Shallow upland 70A Shallow sandstone 70A Malpais upland 70A Malpais breaks 77A Deep hardland 77A Draw 77A Playa 77A Limy upland 	14-16 14-16 14-16	376-1034 424-1504 650-1500 612-1316	3555	455	355	2,112 56,781 817	<1 <1 <1
sandstone 70A Malpais upland 70A Malpais breaks 77A Deep hardland 77A Draw 77A Playa	14-16 14-16	650-1500	5	5			
 70A Malpais breaks 77A Deep hardland 77A Draw 77A Playa 	14-16				5	817	<1
77A Deep hardland 77A Draw 77A Playa		612-1316	5 _				
77A Draw 77A Playa				5	5	46,054	<1
77A Playa	16-22	885-1890	2	2	2	1,445,363	74
	16-22	2765-4530	5	5	5	41,567	9
77A Limy upland	16-22	1400-3000	1	4	4	10,303	98
	16-22	1085-1905	3	3	3	258,800	89
77A Sand hills	16-22	1260-1760	10	9	9	8,488	<1
77A Sandy loam	16-22	1400-1800	7	7	7	396,686	88
77A Very shallow	16-22	590-1180	4	4	4	75,549	9
77A Sandy	16-22	1400-1700	10	9	9	398,236	31

Example LPC Habitat Restoration Blocks 67B 73 79 72 Colorado Kansas 70A 77B **80A** 加旦 Oklahoma 78C Texas 70B 50K Acre Block 78B MLRA Boundary State Boundary Lesser Prairie Chicken Range

Assessment of Terrestrial Ecosystems in the Blackfoot Watershed.

NRCS MT CIG project

% Direct Conversion of Grass-Shrub Ecological Sites

Rural Farm Development	14 105	452	142	33	2	49
Development 1 Rural Farm						
1	75 69	393	93	9	3	35
	14 51	1,006	31	32	0	61
Cropland/Non- native Pasture 5,3	353 14,68	30 44,796	13,031	1,054	1,563	3,591

Blackfoot Uses

- Prioritize restoration needs
- Gain understanding of grass/shrubland diversity
- Incorporate into County planning considerations

Summary

- Ecological sites provide a valuable tool for planning at landscape scales
- Ecological sites can help assess and plan adjustments for predicted effects of climate change
- Ecological sites can help prioritize conservation needs and locations at landscape scales
- ESD's provide a fundamental framework for understanding ecosystem diversity and vegetation dynamics at landscape scales